
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

DISCRIMINATIVE GRAPHICAL MODELS 

FORSPARSITY-BASED HYPERSPECTRAL TARGET 

DETECTION

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

The inherent discriminative capability of sparse representations

has been exploited recently for hyperspectral target

detection. This approach relies on the observation that the

spectral signature of a pixel can be represented as a linear

combination of a few training spectra drawn from both

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13-01-2013

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Hyperspectral target detection, sparsity,probabilistic graphical models

Umamahesh Srinivas,, Yi Chen,, Vishal Monga,, Nasser M. Nasrabadi,, 

Trac D. Tran

Johns Hopkins University

Johns Hopkins University

3400 N. Charles St.

Baltimore, MD 21218 -2686

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Conference Proceeding

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-11-1-0245

611102

Form Approved OMB NO. 0704-0188

60291-MA.6

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Trac Tran

410-516-7416

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



DISCRIMINATIVE GRAPHICAL MODELS FORSPARSITY-BASED HYPERSPECTRAL TARGET 

DETECTION

Report Title

ABSTRACT

The inherent discriminative capability of sparse representations

has been exploited recently for hyperspectral target

detection. This approach relies on the observation that the

spectral signature of a pixel can be represented as a linear

combination of a few training spectra drawn from both

target and background classes. The sparse representation

corresponding to a given test spectrum captures class-specific

discriminative information crucial for detection tasks. Spatiospectral

information has also been introduced into this framework

via a joint sparsity model that simultaneously solves

for the sparse features for a group of spatially local pixels,

since such pixels are highly likely to have similar spectral

characteristics. In this paper, we propose a probabilistic

graphical model framework that can explicitly learn the class

conditional correlations between these distinct sparse representations

corresponding to different pixels in a spatial

neighborhood. Simulation results show that the proposed algorithm

outperforms classical hyperspectral target detection

algorithms as well as support vector machines.

Conference Name:  IEEE International Geoscience and Remote Sensing Symposium (IGARSS2012)

Conference Date:  July 22, 2012



DISCRIMINATIVE GRAPHICAL MODELS FOR
SPARSITY-BASED HYPERSPECTRAL TARGET DETECTION

Umamahesh Srinivas†, Yi Chen‡, Vishal Monga†, Nasser M. Nasrabadi§, and Trac D. Tran‡

†Dept. of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
‡Dept. of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA

§US Army Research Laboratory, Adelphi, MD, USA

ABSTRACT
The inherent discriminative capability of sparse represen-
tations has been exploited recently for hyperspectral target
detection. This approach relies on the observation that the
spectral signature of a pixel can be represented as a lin-
ear combination of a few training spectra drawn from both
target and background classes. The sparse representation
corresponding to a given test spectrum captures class-specific
discriminative information crucial for detection tasks. Spatio-
spectral information has also been introduced into this frame-
work via a joint sparsity model that simultaneously solves
for the sparse features for a group of spatially local pixels,
since such pixels are highly likely to have similar spectral
characteristics. In this paper, we propose a probabilistic
graphical model framework that can explicitly learn the class
conditional correlations between these distinct sparse rep-
resentations corresponding to different pixels in a spatial
neighborhood. Simulation results show that the proposed al-
gorithm outperforms classical hyperspectral target detection
algorithms as well as support vector machines.

Index Terms— Hyperspectral target detection, sparsity,
probabilistic graphical models.

1. INTRODUCTION

An important research problem in hyperspectral imaging
(HSI) [1] is hyperspectral target detection, which can be
viewed as a binary classification problem where hyperspec-
tral pixels are labeled as either target or background based
on their spectral characteristics. Many statistical hypothesis
testing techniques [2] have been proposed for hyperspectral
target detection, including the spectral matched filter (SMF),
matched subspace detector (MSD) and adaptive subspace
detector (ASD). Advances in machine learning theory have
contributed to the popularity of support vector machines
(SVM) [3] as a powerful tool to classify hyperspectral data.

A significant recent advance has exploited the inherent
discriminative nature of sparse representations for hyperspec-

This work has been partially supported by NSF under Grants CCF-
1117545 and ARO under Grant 60219-MA.

tral target detection [4]. The sparsity model is posited on the
observation that spectral signatures of pixels from the same
class (target or background) lie in a low-dimensional sub-
space. Consequently, the spectral signature of a test pixel can
be represented by the linear combination of a few training
spectra which come from an over-complete dictionary built
using the target and background subspaces. The associated
sparse representation, which is obtained as the solution to a
sparsity-constrained optimization problem, has been shown to
capture class-specific discriminative information crucial for
detection and classification tasks. Typically in hyperspec-
tral images, pixels in a small spatial neighborhood belong to
the same class and their spectra are highly correlated, a fact
not exploited by the pixel-wise sparse representation model.
To address this issue, a joint sparsity model has been pro-
posed recently [5] to simultaneously capture spatial and spec-
tral characteristics. The spectral signatures of pixels in a local
spatial neighborhood (of the pixel of interest) are constrained
to be represented by a common collection of training spectra,
albeit with different weights. A simultaneous sparse recovery
problem is now solved to recover both the training support
and the corresponding sparse representation vectors.

Motivation: The resulting sparse representations are dis-
criminative in nature. Hence, the detection statistic in [4,5] in-
volves a simple comparison of reconstruction residuals using
the training and background subspaces separately. The sparse
representations corresponding to different pixels in a local
neighborhood are statistically correlated, and this correlation
is captured intuitively by the joint sparsity model. A challeng-
ing open problem, therefore, is to mine the class-conditional
correlations among these distinct feature representations in a
more principled manner for detection and classification. In
this paper, we propose a probabilistic graphical model frame-
work to explicitly learn the conditional dependencies between
the sparse features via discriminative graphs.

Overview of contribution: The sparse representation
vectors of pixels at different locations in a local spatial
neighborhood (relative to a central pixel) comprise several
distinct sets of features which provide complementary yet
correlated information useful for detection. To learn these



Fig. 1. Hyperspectral image detection using discriminative graphical models on sparse feature representations obtained from
local pixel neighborhoods. The rightmost figure shows the final learnt graphs, where solid lines represent the initial disjoint
graphs and the dashed lines represent newly learnt edges which capture conditional correlations.

statistical correlations, we first learn a pair of discrimina-
tive tree graphs (one for each class) for each distinct set of
features [6], and then augment new edges to these initially
disjoint graphs iteratively via boosting [7]. Consequently, we
learn a discriminative classifier over the sparse features unlike
the reconstruction residual-based detection scheme in [5].

2. BACKGROUND

2.1. Sparsity Models for Hyperspectral Target Detection

Let yyy∈RB be a pixel with B indicating the number of spectral
bands, DDDb ∈ RB×Nb be the sub-dictionary whose columns are
the Nb background training samples, and DDDt ∈ RB×Nt be the
sub-dictionary whose columns are the Nt background training
samples. The HSI pixel yyy can then be written as:

yyy =DDDbαααb +DDDtαααt =
[
DDDb DDDt

]︸ ︷︷ ︸
DDD

[
αααb
αααt

]
︸ ︷︷ ︸

ααα

=DDDααα, (1)

where DDD ∈ RB×N with N = Nb +Nt is a dictionary consist-
ing of training samples from both training and background
classes, and ααα ∈ RN is a sparse vector. Given the overcom-
plete dictionary DDD, the sparse coefficient vector ααα is obtained
by solving the following optimization problem:

α̂αα = argmin‖ααα‖0 subject to ‖yyy−DDDααα‖2 ≤ ε, (2)

where ε is a suitably chosen reconstruction error tolerance.
The class label of yyy is determined by comparing the recon-
struction residuals:

R(yyy) = ‖yyy−DDDbα̂ααb‖2−‖yyy−DDDtα̂ααt‖2 , (3)

where α̂ααb and α̂ααt are, respectively, the set of coefficients in α̂αα

corresponding to DDDb and DDDt . The test vector yyy is identified

as a target pixel if R(yyy) is larger than some suitably chosen
positive threshold δ; if not, it is labeled as a background pixel.

This pixel-wise sparsity model is extended to incorporate
local spatial information in [5] by enforcing a common sup-
port set of training spectra for a collection of neighboring pix-
els yyyi, i = 1, . . . ,T , as follows:

YYY =
[
yyy1 yyy2 · · · yyyT

]
=
[
DDDααα1 DDDααα2 · · · DDDαααT

]
=DDD

[
ααα1 ααα2 · · · αααT

]︸ ︷︷ ︸
SSS

=DDDSSS. (4)

Since all the pixels inYYY are represented by the same collection
of training spectra in DDD, the vectors αααi, i = 1, . . . ,T , all have
non-zero entries at the same locations. As a result, SSS is a
sparse matrix with only a few nonzero rows, and is recovered
by solving the following constrained optimization problem:

ŜSS = argmin‖YYY −DDDSSS‖F subject to ‖SSS‖row,0 ≤ K0, (5)

where ‖SSS‖row,0 denotes the number of non-zero rows of SSS and
‖·‖F is the Frobenius norm. The problem in (5) can be ap-
proximately solved by the greedy Simultaneous Orthogonal
Matching Pursuit (SOMP) algorithm [8].

2.2. Probabilistic Graphical Models

Probabilistic graphical models provide a convenient way of
visualizing the correlations between the individual random
variables in a multivariate probability distribution. The ran-
dom variables are represented by the nodes V = {v1, . . . ,vr}
in a graph G , and the (undirected) edges E ⊂

(V
2

)
which

connect pairs of nodes identify conditional dependencies. A
graphical model hence approximates the joint probability dis-
tribution function by a product of terms that represent pair-
wise and marginal statistics. Many recent applications [9]
have demonstrated the ability of graphical models to learn



models for high-dimensional data using limited training (a
typical scenario for practical HSI applications) under mod-
erate computational complexity.

As the starting point for our contribution, we consider a
recent discriminative learning framework [6] wherein a pair
of graphs is jointly learnt by minimizing the classification er-
ror. Specifically, the tree-approximate J-divergence (a sym-
metric extension of the Kullback-Leibler (KL) distance) be-
tween two distributions p and q is maximized:

Ĵ(p̂, q̂; p,q) =
∫
(p(x)−q(x)) log

[
p̂(x)
q̂(x)

]
dx. (6)

Based on the observation that maximizing the J-divergence
minimizes the upper bound on the probability of classification
error, the discriminative learning problem then becomes:

(p̂, q̂) = arg max
p̂,q̂ are trees

Ĵ(p̂, q̂; p̃, q̃), (7)

where p̃ and q̃ are the available empirical estimates. The prob-
lem in (7) is shown to decouple into two maximum-weight
spanning tree (MWST) problems [6]:

p̂ = arg min
p̂ is a tree

D(p̃||p̂)−D(q̃||p̂)

q̂ = arg min
q̂ is a tree

D(q̃||q̂)−D(p̃||q̂),
(8)

where D(p||p̂) = Ep[log(p/p̂)] represents the KL-distance.
From (8), we see that the optimal choice of p̂ (q̂) minimizes
its distance to p̃ (q̃) while simultaneously maximizing its dis-
tance from q̃ ( p̃). The trade-off between generalization and
performance inherent to graphical models is resolved by iter-
atively thickening the initial graph with more edges via boost-
ing [7] to learn a richer structure.

As discussed earlier, the sparse representations from dif-
ferent pixels in a local spatial neighborhood are correlated and
our contribution is an attempt to explicitly learn these condi-
tional dependencies. To this end, we instantiate our recent
discriminative graphical framework [10] for HSI detection.

3. DISCRIMINATIVE GRAPHICAL MODELS FOR
HYPERSPECTRAL TARGET DETECTION

In this section, we introduce our proposed Local-Sparsity-
Graphical-Model (LSGM) approach for joint sparsity and
graphical model-based HSI detection. An illustration of the
overall framework is shown in Fig. 1. Algorithm 1 outlines
the steps in the process, which consists of an offline training
stage (Steps 1-4) followed by an online test stage (Steps 5-6).
The discriminative graphs are learnt in the training stage.
First, feature vectors (i.e., sparse vectors with respect to a
given DDD) of training samples and their neighboring pixels are
obtained by solving the joint sparse recovery problem in (5).

Let T be the size of the neighborhood. For every pixel
yyy ∈ RB, T different features αααl ∈ RN , l = 1,2, . . . ,T are ob-
tained, as illustrated in Fig. 1 for a 3× 3 neighborhood with

Algorithm 1 LSGM (Steps 1-4 offline)
1: Feature extraction (training): Compute sparse representations

αααl , l = 1, . . . ,T for neighboring pixels of the training data
2: Initial disjoint graphs:

Discriminatively learn T pairs of N-node tree graphs G t
l and Gb

l
on {αααl}, for l = 1, . . . ,T , obtained from training data

3: Separately concatenate nodes corresponding to the two classes,
to generate initial graphs

4: Boosting on disjoint graphs: Iteratively thicken initial disjoint
graphs via boosting to obtain final graphs G t and Gb

{Online process}
5: Feature extraction (test): Obtain sparse representations αααl , l =

1, . . . ,T in RN from test image
6: Inference: Classify based on output of the resulting classifier

using (9).

T = 9. Training features for class Ct correspond to pixels
in a neighborhood of training target samples, while features
for Cb are the sparse vectors associated with neighbors of
background training samples. For each of the T sets of fea-
tures, a pair of N-node discriminative tree graphs G t

l and
Gb

l , which respectively approximate the class distributions
f (αααl |Ct) and f (αααl |Cb), are simultaneously learnt. The initial
disjoint graphs with T N nodes representing the class dis-
tribution corresponding to Ct and Cb are then generated by
separately concatenating the nodes of G t

l , l = 1, . . . ,T and
Gb

l , l = 1, . . . ,T , respectively. These graphs with sparse edge
structure are then iteratively thickened via boosting [10]. Dif-
ferent pairs of discriminative graphs over the same sets of
nodes with different weights are learnt in different iterations,
and the newly-learnt edges are used to augment the graphs.
The final “thickened” graphs G t and Gb are shown in Fig. 1.

The above process is performed offline. The classifica-
tion of a new test sample is then performed online. Features
ααα are extracted from the test sample yyy by solving the sparse
recovery problem in (5) for the T pixels in the neighborhood
centered at yyy. Let f̂ (ααα|Ct) and f̂ (ααα|Cb) denote the probabil-
ity distribution functions for the final graphs G t and Gb learnt
for Ct and Cb respectively. The class label of yyy is finally de-
termined as follows:

Class(yyy) =

Target if log
(

f̂ (ααα|Ct )

f̂ (ααα|Cb)

)
≥ 0

Background if log
(

f̂ (ααα|Ct )

f̂ (ααα|Cb)

)
< 0.

(9)

4. EXPERIMENTAL RESULTS AND DISCUSSION

Hyperspectral images from the HYDICE forest radiance
I data collection (FR-I) [11] are used for the experiment.
The HYDICE sensor generates 210 bands across the whole
spectral range from 0.4 to 2.5 µm, spanning the visible and
short-wave infrared bands and including 14 targets. Only
150 of the 210 available bands are retained by removing the
absorption and low-SNR bands. The target sub-dictionary DDDt
comprises 18 training spectra chosen from the leftmost target



Table 1. Confusion matrix for the FR-I hyperspectral image.
Four different methods are compared. (Nt = 18 and Nb = 216.)

Class Target Background Method
Target 0.6512 0.3488 MSD

0.9493 0.0507 SVM-CK
0.9556 0.0444 SOMP
0.9612 0.0388 LSGM

Background 0.0239 0.9761 MSD
0.0090 0.9910 SVM-CK
0.0097 0.9903 SOMP
0.0086 0.9914 LSGM

in the scene, while the background sub-dictionary DDDb has
216 training spectra chosen using the dual window technique
described in [4].

Four different methods are compared: (i) classical matched
subspace detector (MSD) which operates on each pixel inde-
pendently [12], (ii) composite kernel support vector machines
(SVM-CK) which considers a weighted sum of spectral and
spatial information [3], (iii) simultaneous orthogonal match-
ing pursuit (SOMP) which involves solving Eq. (5) with a
3× 3 local window [5], and (iv) the proposed LSGM ap-
proach with the same 3× 3 window to generate the sparse
features. Table 1 shows the confusion matrix in which detec-
tion and error rates are provided with each row representing
the true class of the test pixels and each column representing
the output of the specified classifier. All four approaches are
compared, and the proposed LSGM methods offers better
target detection performance. Improvements over SOMP can
be attributed to the use of an explicit discriminative classifier
in LSGM. All approaches identify the background class with
a reasonably high degree of accuracy.

Fig. 2 shows the receiver operating characteristics (ROC)
curve for the detection problem. The ROC curve describes the
probability of detection (PD) as a function of the probability
of false alarms (PFA). To calculate the ROC curve, a large
number of thresholds are chosen between the minimum and
maximum of the detector output, and class labels for all test
pixels are determined at each threshold. The PFA is calculated
as the ratio of the number of false alarms (background pixels
determined as target) to the total number of pixels in the test
region, while the PD is the ratio of the number of hits (target
pixels correctly determined as target) to the total number of
true target pixels. It can be seen that the proposed LSGM
approach offers the best overall detection performance.
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